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FIG. 2. Comparison of the exact solution and equation (23) for 
the case of a flat plate, b = 0. 

start to diverge for larger Prandtl numbers and, finally, 
become parallel to each other at a sufficiently large Prandtl 
number. For Pr Q 1, the maximum error of 70% by the 
conventional asymptote was reduced to 13% by the two- 
region model [l] and it is further reduced to only 0.8% by the 
present theory. The accuracy is dramatically improved, 
particularly in the range of 0.1 6 Pr Q 1. It should also be 
noticed that the present theory converges faster than the other 
two asymptotes at a small Prandtl number. 

Calculations also indicate that the present theory shifts 
from underestimation to overestimation between Prandtl 
numbers of 0.8 and 1.0, which implies that there is one point 
between these two values at which the present theory and the 
exact solution yield identical values. Since equation (23) is an 
asymptote for small Prandtl numbers, as indicated by (24), it 
also matches the exact solution asymptotically at zero Prandtl 
number. Therefore, the present theory matches the exact 
solution at two points. On the other hand, the two-region 
model and conventional asymptote both match the exact 
solution asymptotically at zero Prandtl number, but deviate 
ever afterwards, with the two-region model always 
underestimating and the convectional asymptote over- 
estimating. In the sense of the number of points matching the 
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exact solution, the two-region model and the conventional 
asymptoteareoffirst-order,and thepresent theoryisasecond- 
order asymptote. 

For an accelerating flow, B > 0, the present theory also 
yields better predictions and converges faster than the other 
two asymptotes. For instance, the maximum error for the case 
of /3 = 2 for Pr < 1 is 2.5x, compared to 5.6% by the two- 
region model [l] and 32% by the conventional asymptote. For 
a decelerating flow when the diverging angle is not too large, 
the present theory again gives better predictions. For Pr < 1, 
the maximum error is 3.3% for a = -0.1, compared to 15% by 
the two-region model, and 8.4% for fi = - 0.16, compared to 
16% [l]. However, for a strong decelerating flow, /I = 
-0.198838, the present theory yields results with about the 
same accuracy as the two-region model up to Pr = 0.1, but 
becomes less accurate for larger Prandtl numbers. At Pr = 1, 
the error is 26% compared to 15% for the previous model. 

It is interesting to see that the present theory has its best 
prediction for the case of a flat plate. This can be explained by 
the following argument. 

Since the heat transfer rate depends strongly on the velocity 
field close to the wall, a good velocity simulation in this region 
is essential to the heat transfer rate prediction. Under the non- 
slip and impermeable conditions, the velocity boundary-layer 
equation on the wall becomes 

du, 

y=O=-um dx’ 

For the special case of a flat plate, du,/dx = 0, the second 
derivative is identical to zero. This indicates that the velocity 
profile close to the wall can be well approximated by a linear 
profile. Incidentally, as a linear profile is assumed in the 
velocity boundary layer by the present theory, there is good 
reason to believe that the present theory is at its best for the 
case of a flat plate. 
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1. INTRODUCTION flow field which, after it originates in the vicinity of the line 
source, penetrates the unbounded porous surroundings. In 

Trm PREsBm paper aims to analyze an important fundamental addition to its fundamental nature, the present problem finds 
problem in porous media natural convection: the pheno- practical applications illustrated by the spreading of chemical 
menon of time-dependent heat, mass and fluid flow induced by pollutants generated by exothermic reactions in the earth’s 
a horizontal line source producing simultaneously heat and a crust, the chemical industry, the disposal of nuclear wastes and 
chemical species. The study will determine the effect of the the natural convection cooling of buried electrical cables. 
presence of the chemical species on the main features of the Previous studies of natural convection from a line source 
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NOMENCLATURE 

A dimensionless parameter, (/Qnk)/(BqD) X horizontal Cartesian coordinate 
B dimensionless parameter, (Ati)“’ Y vertical Cartesian coordinate. 
C species concentration [kg m-“1 

CP specific heat of fluid at constant pressure 
D mass dilIusivity [m’ s-r] 

Greek symbols 

d distance between wall and source i 
effective thermal diIIusivity of porous medium 
coefficient of thermal expansion 

Ei($) exponential integral, 

c 

m 
_ Cexp ( - TM51 d5 

SC coefficient of concentration expansion 
Y Euler’s constant, 0.5772 
II similarity variable, r/2t’/’ 

J+ 
9 gravitational acceleration 

angle 

K permeability of porous medium 
f: dimensionless parameter, b/u 

Le Lewis number, a/D P viscosity 

m rate of species generation from the line source 
V kinematic viscosity 

p lhs-‘I 
r dummy variable 
P fluid density 

pressure 
rate of heat generation from the line source [W] 

u heat capacity ratio, 
4 
r radial coordinate rJ = C4(PC,)r + (I- 44 &.M/@cdr 

T 
Rn Darcy-modified Rayieigh number based on the 

dimensionless time, r&d2 

permeability of the porous matrix and the heat 
r$ porosity of porous matrix 

generation rate at the source, K”“g&/pak * streamfunction, 

function defined in equation (16) 
u 

S * = r-r+ a$,lae,~, = -alLJar, 

T temperature _ 
t time Subscripts 
I4 radial velocity * dimensional quantity 
V tangential velocity co reference state. 

in an unbounded porous medium driven only by thermal 
buoyancy are exemplified by refs. [l-4]. Reference [l] deals 
with the high Rayleigh number regime, refs. [2,3] with the low 
Rayleigh number regime and ref. [4] reports numerical 
calculations valid in a wide Rayleigb number range. The 
present investigation relies on asymptotic expansions in the 
Rayleigh number [2, 5,6] to obtain the transient flow, tem- 
perature and concentration fields. The results reported in 
this paper extent the findings in ref. [2], for they account for the 
presence of concentration gradients in the driving buoyancy 
mechanism and depict the effect of mass transfer on the flow 
and temperature fields. 

2. MATHEMATICAL FORMULATION 

The system of interest is a horizontal line source located in 
an unbounded porous medium. Initially, the temperature and 
the concentration are uniform everywhere in the system. 
Suddenly, the line source begins to liberate heat (per unit 
depth) at a rate of q W and a chemical substance at a rate 
m kg s-r. The density of the generated substance is different 
from the density of the fluid saturating the porous medium. 
The dimensionless governing equations according to the 
Darcy flow model [7] are 

The non-dimensionalization ofthe above equations was based 
on the following definitions 

(u,, 0,) 
(u, v) = - 

c*--cm G-T, 
CZ/K1J2’ 

cc- T=-. 
m/D ’ q/k 

(4) 

All the parameters appearing in the governing equations 
are defined in the Nomenclature. The fluid is modeled as 
Boussinesq incompressible whereby the density is assumed to 
be constant everywhere except in the buoyancy terms in (1) 
where it is given by 

p = P,C~--B(T,-T,)+B,(~,-C~)I. 
The boundary and initial conditions necessary to complete 

the mathematical formulation are 

u,+O, v,+O, T,+T,, 

c*--,c, as r*+ co or t, =0 

It is worth stressing that parameter A in equation (1) measures 
the relative contribution of the concentration and the thermal 
buoyancy in driving the flow. Negative values of A imply that 
the two diffusion mechanisms drive the flow jointly whereas 
positive values of A indicate that the two mechanisms oppose 
each other. 

3. PERTURBATION SOLUTION FOR THE 
TRANSIENT STATE 

When the Rayleigh number is small, the problem outlined in 
the previous sections accepts an approximate theoretical 
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solution of the form 

(G, 17; c) = : (t/L, T,, c&Q” (7) 
n=0 

where $., T. and c, depend on r, Q and t. To obtain $,,, T., c, we 
substitute equation (7) into the governing equations (l)(3), 
collect terms of equal order in Ra and solve the resulting 
differential equations. The method of solution of these 
equations is identical to that outlined in refs. [2,5,6]. Here, we 
present only the final expressions for the temperature, 
concentration and flow fields. The intermediate steps, similar 
to those in [2,5,6], are outlined in ref. [S]. 

The zeroth-order solutions (n = 0) correspond to the state 
of pure diffusion, i.e. in the absence of fluid motion. Hence, we 
set $0 = 0 and according to Carslaw and Jaeger [9] 

T, = - & Ei( -$), c0 = - & EI’[ -(Bt#] (8,9) 

r 
q = 2t”Z, B = (1Lp. (10, 11) 

The first-order solutions read 

(12) +A 1-exp[-(Bd2] _BqEi[_(Btl)2] 
B ( B1 

Pi2 sin 6 
Tl = ~ 

16~’ { 
(In ?)C(v - 2)~ -$I+ din t112 + q y 

+$~+.*~+~ B(~3+r/)ln(Bn)-2Brjlnr]ln(Br/) 
[ 

II 

p/z 
$1 =-COSB 

exp(-1*)-l 

4n 
+ q Ei(-r$) 

tl 

(13) 

tli2 sin 0 Le 
cr = 

16n2B { 
(In gdC(r - 2)gq - (W + Btt In tl 

+81~+(&#~+.,. II . (14) 

Parameter B has a paramount effect on the flow field in the 
case where the two buoyancy mechanisms are opposing each 
other (A > 0). For example, a map of streamlines, $1/(t”Z/2n) 
zz corn& is shown in Fig. 1, for A = 0.25, B = 0.1. Figure 1 
indicates that values of B of order less than unity create a 
downward flow far from the source, engulfing the toroidal 
vortex near the source. To shed light on the implications of this 
result the physical meaning of parameter B needs to be 
examined. This parameter represents the ratio of two length 
scales in the transient regime: the thermal penetration length 

scale, I, N O(,/&r)divided by the species penetration length 
scale, I, - O(m). Values of B less than unity indicate that 
the species generated by the source diffuses faster than heat at 
early times. Therefore, outside the region of extent I, in which 
the heating effect of the source is felt, the species concentration 
gradients act alone initiating the downward flow shown in Fig. 
1. The outer boundary of the region in which the heating effect 
of the source is not negligible is defined by the streamline 
a,b,/(t”‘/2n) = 0 drawn by using a dashed line in Fig. 1. It is 

Fm.1. The effect of parameter B on the flow field for B = 0.1, 
A = 0.25. On each streamline, $1/(t”2/2n) = const. 

worth noting that for the special case B = 1 the streamline 
pattern l(11/t1’2(1 - A) = const [equation (12)] consists of a 
toroidal vortex identical to that reported in ref. [2] for A = 0. 
The effect of A on the radial distribution of ct and Tl is shown 
in Fig. 2. Negative values of A amplify the impact of the source 
on the temperature and concentration distributions while 
positive values of A weaken that effect relative to the A = 0 
limit (no species generation). Finally, important conclusions 
relevant to the steady-state flow field may be drawn by 
examining the behavior of the two velocity components at 
large times (7 + 0) 

1 
(u, u) = - - [In r~ - A In (&)I (sin 0, 

4n 
cos 0). (15) 

Clearly, as t + co the magnitude of the velocity grows without 
bound. Hence, no steady state exists for the problem of low Ra 

FIG. 2. The effect of parameter A on the radial variation of the 
first-order convective correction or the temperature field 
(16sZT,/t1’Z sin B)ortheconcentrationfield(16x2c,/t’~2 sin 6) 

forB=Le=l. 
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double-diffusive convection from a line source in a porous 
medium, in agreement with the findings in ref. [2] for natural 
convection driven by temperature gradients alone. 

Due to the prohibitive complexity of the algebraic 
calculations, higher-order solutions in Ra were impossible to 
obtain. 

4. THE PRESENCE OF A 
VERTICAL INSULATED WALL IN 
THE VICINITY OF THE SOURCE 

Based on the previous results it is possible to shed light on 
the effect ofthe presence of a vertical insulated wall on the flow 
field induced by the line source. Assume that the insulated 
vertical wall constitutes the ye-axis of an (x,-y,) Cartesian 
coordinate system and that the line source is located at x* = d, 
y, = 0. This arrangement is equivalent to an arrangement 
consisting of two line sources positioned at y, = 0, x* = + d, 
with the vertical wall removed [2]. The zeroth-order solution 
corresponds to the case ofno fluid motion and it is reported in 
ref. [9]. Hence, it is not repeated here for brevity. As explained 
in ref. [Z], due to the linearity of the momentum equation the 
solution for *I is simply the superposition of solutions for line 
sources at x = k 1, y = 0. In this part of the study d was used as 
the reference length for the non-dimensionalization. The final 
expression for *I reads 

where 

~1 = z (S+ +s-) (16) 

S (x*1Y+y2 1 4r -1 I 
x+1 m -_ 
2+ s 

exp(-5) 
pd5 

1(x* $+Y*lw r 

_B2(xc1)z+Yz _l 

45 1 > 
B(x&l) m 

25”2 s 
(17) 

B2[(X*l)‘+y2]/4t 
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The first-order equations for c1 and 7F~ are non-linear, 
therefore, it is not possible to obtain c1 and TI by 
superposition. The streamline pattern $ J( 1 -A) = const for 
r = 1, B = 1 was identical to the streamiine pattern in ref. 
[2] where the concentration-gradient-induced buoyancy 
was neglected (A = 0). Basically, the presence of the wall 
flattens the streamlines in the wall vicinity. For an illustration 
of this effect ref. [Z] is recommended. 
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1. INTRODUCTION 

A LARGE number of technically important problems are 
classified as moving boundary. Heat transfer problems with a 
phase change, litospheric movement according to plate 
tectonics, gas-solid reactions occurring in a moving reaction 
zone are all of the moving boundary type. For various kinds of 
such problems there are solutions available Cl]. For the case 
that the thermal conductivity varies linearly with temperature 
Cho and Sunderland [Z] presented an exact solution; Voller 
and Cross [3] have investigated the same problem in two 

dimensions. Cheung et al [4] presented numerical solutions 
for a finite slab with internal heat generation. 

Analytical solutions, although very convenient, can only be 
applied to very specific cases. In situations where physical 
properties depend on system variables the analytical solutions 
are impossible. Problems with various complexities and 
boundary conditions can be analyzed numerically using 
superfast computers. 

An approximation commonly adopted in numerical 
approach is that the phase boundary movement and also the 
changes in transient quantities occur at a constant rate in a 
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